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Introduction Computational network model predictions and validation of transgenic overexpressing mouse models

« Cardiac hypertrophy is a common response of cardiac myocytes to stress and a fOr Cd rd |AaC hype rtrOphy

predictor of heart failure. While in vitro cell culture studies have identified
numerous molecular mechanisms driving hypertrophy, it is unclear to what extent
these mechanisms can be integrated into a consistent framework predictive of in a
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Double transgenic predictions using Conclusions

In vivo hypertrOphy Slg na“ng netWOrk « We show that an in vitro-based computational

model of cardiac hypertrophy is able to predict in

Intermediate species validation and modular relationships of network
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